If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+4t=24
We move all terms to the left:
t^2+4t-(24)=0
a = 1; b = 4; c = -24;
Δ = b2-4ac
Δ = 42-4·1·(-24)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{7}}{2*1}=\frac{-4-4\sqrt{7}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{7}}{2*1}=\frac{-4+4\sqrt{7}}{2} $
| 4y+y^2=180 | | 2(3)^x=43 | | 7+2(-1-4x=-8x) | | 7+2(-1-4x=-8x | | -6x/11=4/5 | | 4+20t-8t=-6t-14 | | -7(a-2)=38-a | | x/3-9+8x=72 | | 6/x=-5/10 | | 3/4x+5/1=1/8x | | 3b^2+9b-5=0 | | 6p+18=2p+6(3p-4) | | 18+28t=-6t | | -10/x=-6/4 | | 4k+5=Ak-75 | | 3•n=23.7 | | 9x-5=7+2x | | -7+9x;=3 | | 11=1/3a | | 5=1/3x+10 | | x^4+3x^3-5x^2-1=0 | | 3(3x+1)+22(4-x)=6x-4(3x-2) | | 207=3x+3(7x-11) | | A=9/7(h-39) | | x+2/5=5 | | 14.5=3-x(11.5) | | c+9/8=9 | | 15=3-x(14.5-3) | | 210=7x+7(3x+2) | | -3/4x=1222 | | -(2f-8)=9-2f | | -2x=+18 |